
Queueing Simulation of Silicon Track Trigger Dead Time

Using the Ptolemy Simulation Package

D� Note 3673

S.L. Linn
Florida State University

(August 16, 1999)

Abstract

A simple model of the Silicon Track Trigger (STT) was implemented in the

Ptolemy simulation package. The dead time for di�erent track �tting times

was measured for one and six geometric sectors. The inclusion of all six sectors

was found to increase the system dead time from 5% to 25% for a track �tting

time of 80 �s. Spreading the track �tting over two modules per sector roughly

doubles the system performance.

I. INTRODUCTION

In section II, the Ptolemy 1 simulation package (http://ptolemy.eecs.berkeley.edu/) is
described. In section III, the baseline STT trigger(Heuring D� Note 3492) is modeled, and
in section IV the results of a simple example are described. Section V is a short term plan
with the goal of using the simulation to guide �nalzation of the STT design.

FIG. 1.

1

FIFOQueue

VarDelay

RanGen.exp

FIG. 2. Schematic of a queue and serve galaxy.

II. PTOLEMY

\The Ptolemy project studies modeling, simulation, and design of concurrent, real-
time, embedded systems. The focus is on assembly of concurrent components. The key
underlying principle in the project is the use of well-de�ned models of computation that
govern the interaction between components. A major problem area being addressed is the
use of heterogenous mixtures of models of computation. A software system called Ptolemy
II is being constructed in Java. The work is conducted in the Department of Electrical
Engineering and Computer Sciences of the University of California at Berkeley. The project
is directed by Prof. Edward Lee. The project is named after Claudius Ptolemaeus, the second
century Greek astronomer, mathematician, and geographer."

In other words, Ptolemy can simulate complex systems at di�erent levels of detail and
with di�erent time scales. The so-called models of computation are called domains which
are executed in closed systems called universes . Universes can communicate through well
de�ned worm holes. For simple queueing simulations, we need not concern ourselves with
this degree of generality, and limit ourselves to the Discrete Event (DE) domain. Hierarchy
is implemented in a universe with galaxies which in turn contain stars (the basic elements
of simulation).

A queueing simulation is created by construction of a universe containing galaxies and
stars, which are chosen from a palette . Data ow between these objects is implemented by
drawing lines between well de�ned input/output ports. This can be done through a GUI or
by scripting. Ptolemy is written in C++ and uses dynamically loaded libraries. The source
code is readily available, and user coded stars (functions) are simple to implement. One
can choose from a variety of sources(signal types), sinks(histograms, plots, text), and
operations (routers, queues, servers). In the DE domain, an event is de�ned by a starting
time and a data value(event number). Delays incurred while waiting in queues or while
being served are added to the starting time.

As a illustration, Fig.2 shows a schematic of a general queue and serve galaxy. The FIFO
queue is of variable size. Events arrive from the left side and depart from the right when
triggered by the bottom input. If an event arrives when the queue is full, it is routed to

2

svx_digi seq_delay l2x_delayclu_delay hit_delay trk_delay

STT 1.2

3 us
1 ev

7 us
1 ev

2 us
1 ev

7 us
1 ev

20-200 us
16 ev

7 us
1 ev

FIG. 3. Schematic of an STT sector galaxy.

Process Service Time(�s) Distribution Bu�er Size

L1 Accept 100 Poisson -

SVX digitization 10(3) �xed 1

Data to STT 7 Exponential 1

Cluster �nding 2 Exponential 1

Data to track �tting 7 Exponential 1

Track �tting 20-200 Exponential 16

Data to Global L2 7 Exponential 1

TABLE I. Baseline STT Parameters

one of the top outputs, which in this case is terminated in a null sink(inverted triangle).
The other top output carries the queue size and is terminated in this example. In order to
implement a variable delay given by an exponential distribution, the output event is split
and sent to trigger the random generator, and the other branch is delayed by that amount.
In this example, the delayed event is split, with one branch goung to the output, while the
other branch is sent to trigger release of the next event. The large arrows de�ne the galaxy
input and output points.

III. D� STT MODEL

Figure 3 shows the sequence of queue and serve galaxies that comprise the STT processing
chain for a single sector. The service time and queue depths for each element are summarized
in Table I. The �rst element is the SVX digitization which is taken as a �xed delay of 10�s (
A more recent estimate for digitization time is 3�s). The second galaxy represents the data
transfer through the sequencer into STT processors. Next is the galaxy which performs the
cluster �nding which passes its data through a transfer galaxy to the track �tter and �nally
a transfer to the global L2.

Elements 2,3,4,6 all have bu�ers one event deep and exponential service times. The input
to track �tting has a 16 event bu�er. Each FIFO in the chain releases the next event after

3

Poisson

MeasureDelayMerge

counter

counter

Xhistogram

fan_out

1

2

3

4

5

6

fan_in

1

2

3

4

5

6

stt1.2

stt1.2

stt1.2

stt1.2

stt1.2

stt1.2

Ramp

FIG. 4. Schematic of the STT universe.

servicing the previous event. In this model there is no global 'sync' and events that arrive
at a processor with a full FIFO are lost.

Three models were tested. The �rst is a single sector for which time parameters apply,
and the second is a simulation that has all six sectors running in parallel. At this time only
a single exponential random distribution was available. As such, long tails characteristic
of D� events were inadequately modeled. Also, each galaxy representing the processing
sequence used independently generated random numbers. It seems likely that processes in
the chain are correlated. For example, large events will take longer to transfer and longer to
process. In the future these shortcomings will be handled with custom coded galaxies. The
last model assumed two fold parallelism in the track �tting modules, each with its own 16
event bu�er.

IV. EFFECT OF TRACK FITTING

A schematic of the simulation universe is shown in Fig. 4 where in addition to STT
elements are sinks for obtaining statistics and plotting distributions. The Level 1 accept rate
is represented on the left as a Poisson generator source with an average of 100�s between

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 25 50 75 100 125 150 175 200
track fitting time(us)

de
ad

 ti
m

e
fr

ac
tio

n

all sectors

one sector

all parallel tracking

FIG. 5. Dead time vs. Track �tting time for one (open), six(solid) sectors, and six(square)

sectors with parallel track �tting.

stt delay

Set 0

Y x 10-3

3X x 10
0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

FIG. 6. Events vs. Delay Time through the system for a 100 �s track �tting time.

5

events. This is fed into a ramp generator which assigns a unique event number, which is
used for later comparisons. For purposes of obtaining statistics, each event is sent to a
counter and also routed around the STT with no delay. Delay times are measured relative
to the un-delayed signal and histogramed. Live times are de�ned as the ratio of events going
through the STT system delay, and not lost due to full bu�ers, to the total number of events
simulated.

Simulations were done over a range of track �tting times of 20-200�s. The dead time
results are shown in Fig.5 where both models have less than 5% dead time until a track
�tting time less than 80�s is reached. The errors shown are binomial; however, at small
service times the e�ect of bu�ers introduces additional correlations. Correlations between
sectors are also not accounted for, since Monte Carlo events were not used to simulate sector
occupancy. For longer �tting times the six sector model dead time rises steeply. The delay
time distribution for a 100�s �tting time is shown in Fig.6, and it can be seen to depart
signi�cantly from an exponential distribution. The mean is slightly larger than the sum of
all service times; however, long tails extend past twice the average time. Finally, a model
with two track �tting modules per sector was simulated. In principle this should halve the
total track �tting time. For comparison to the other models, twice the track �tting time is
plotted in Fig. 5. As expected, this improves performance by yielding a 10% dead time for
a track �tting time of 160�s.

V. CONCLUSIONS

The initial experience with Ptolemy can be summarized as follows:

� It can model the Level 2 D� trigger at a greater level of detail than RESQ.

� The run-time environment is reliable and robust.

� It is well doccumented, with tutorials, and examples.

� Lack of `support' is o�set by a large user group.

� It has suÆcient generality to implement more realistic queueing models than have thus
far been realized.

To further design of the STT the following tasks should be completed.

� Implement hyperexponential random distribution

� Include other Level 2 branches

� Understand how correlations e�ect sequential service times

� Study more parallelism/bu�ering at the track �tting stage

� Implement realistic control structure

6

